Asynchronous administration of xenon and hypothermia significantly reduces brain infarction in the neonatal rat.
نویسندگان
چکیده
BACKGROUND Neonatal asphyxia causes long-term neurological and behavioural impairment in the developing brain. Concurrent administration of xenon and hypothermia synergistically reduces long-term damage in a rat model of neonatal asphyxia. This study sought to investigate whether asynchronous administration of xenon and hypothermia is capable of combining synergistically to provide neuroprotection. METHODS Seven-day-old rats were subjected to right common carotid artery occlusion followed by 90 min hypoxia with 8% oxygen. After a 1 h recovery period, rats received asynchronous administration of mild hypothermia (35 degrees C) and xenon (20%) with a 1 or 5 h gap between interventions, xenon (20%) alone, or mild hypothermia (35 degrees C) alone. Infarct volume in the brain was measured 4 days after injury. RESULTS Administration of hypothermia or xenon alone, 1 and 6 h after the hypoxic ischaemic insult, respectively, provided no neuroprotection. Asynchronous administration of xenon and hypothermia at a 1 h interval produced a significant reduction in infarct volume [93 (7) vs 74 (8); P < 0.05]. Reduction in infarct volume was also present when hypothermia and xenon were asynchronously administered with an intervening gap of 5 h [97 (5) vs 83 (3); P < 0.05]. CONCLUSIONS This finding provides a rationale for investigating the combined use of hypothermia and xenon in a progressive manner for the management of neonatal asphyxia. Thus, hypothermia can be administrated at the site of delivery and xenon can be administered later.
منابع مشابه
Effect of Combination Therapy Using Hypothermia and Granulocyte Colony-Stimulating Factor in a Rat Transient Middle Cerebral Artery Occlusion Model
Background: Stroke is the third leading cause of death. Hypothermia has been recognized as an effective method in reducing brain injury. In this study, we assessed the effects of granulocyte colony-stimulating factor (G-CSF) as a neuroprotective agent and mild hypothermia on mortality, behavioral function, infarct volume, and brain edema in Wistar rats. Methods: Forty male rats were used in fiv...
متن کاملInhibition of Angiotensin-Converting Enzyme Reduces Cerebral Infarction Size in Experimental-Induced Focal Cerebral Ischemia in the Rat
Background: The role of Renin Angiotensin System (RAS) in ischemic/reperfusion (I/R) injuries is not fully elucidated. Furthermore, it is not clear whether inhibition of RAS by Angiotensin-Converting Enzyme (ACE) inhibitors has beneficial effects in terms of protecting the brain from I/R injuries. In this study enalapril is used as an ACE inhibitor to evaluate the role of RAS in I/R injuries in...
متن کاملCooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia.
Hypothermia (HT) improves outcome after neonatal hypoxia-ischemia. Combination therapy may extend neuroprotection. The noble anesthetic gas xenon (Xe) has an excellent safety profile. We have shown earlier that 3 h of 50% Xe plus HT (32 degrees C) additively gives more protection (72%) than either alone (HT=31.1%, Xe=10.2%). Factors limiting clinical use include high-cost and specialist adminis...
متن کاملGlucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE)
Hypoxic-ischemic encephalopathy (HIE) resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been inve...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- British journal of anaesthesia
دوره 98 2 شماره
صفحات -
تاریخ انتشار 2007